师资力量

张海霞

张海霞

教授,博士生导师

北京大学信息科学技术学院

 

 

 

张海霞教授,1998年毕业于华中科技大学获得博士学位。2001年加盟北京大学微电子学研究院。2004年至2006年,在美国加州大学戴维斯分校与凯斯西储大学任访问教授。现任全球华人微纳米分子系统学会秘书长,全球华人微米纳米技术合作网络执行主席,IEEE NTC北京分会主席等。 2006年参与发起IEEE NEMS国际会议,2007年发起美新杯微纳传感器应用大赛,2009年发展为国际大学生物联网创新创业大赛(iCAN),担任大赛主席至今。担任Tranducers11等多个国际会议的组织委员会主席,担任多个国际杂志的编委和审稿人。主持国家973、863、自然科学基金重点项目等重要科研项目二十余项,在国内外重要学术期刊和国际会议上发表学术论文100多篇,取得软件著作权8项,发明专利6项;出版著作和译著5本。2006年获得国家技术发明二等奖,2004年北京大学优秀班主任三等奖,2007年北京大学优秀青年教师教学奖。

 

研究方向:微纳设计与加工技术SiC MEMS技术、微能源技术

微纳设计与加工技术

Ø  微纳米加工技术:利用深刻蚀加工技术,开发出适合于大规模加工的高精度微纳复合结构的加工技术,并应用到NEMS结构和器件的制备中去,得到了可选择性的超疏水结构和表面,并得到了较好的能量吸收谱线,正在探索在太阳能方面的应用。

Ø  DRIE建模与模拟:2004年在国际上第一个提出刻蚀与钝化交替的DRIE模型,并完成了DRIE模拟软件,2005年与国际知名的MEMSCAD公司Intellisuite进行了产业化合作,作为独立模块RECIPE集成到Intellisuite软件中,是国内第一款走上市场的MEMS软件。目前RECIPE模块已经包括微纳米复合结构加工和仿真等多种功能。

Ø  TSV建模与仿真:针对颇受关注的TSV封装技术,开展相应的TSV建模技术和模拟工具的研发。

SiC MEMS技术

Ø  PECVD SiC加工技术:利用PECVD低温工艺的特点,开发了低温应力可控、晶体结构可调的SiC薄膜工艺,形成了与MEMS/CMOS工艺兼容的低温SiC MEMS加工技术。利用SiC的化学稳定性,将其应用拓展到了深刻蚀、腐蚀等工艺中去。

Ø  SiC MEMS器件:研制了适用于高温腐蚀等恶劣环境的SiC MEMS压力传感器和谐振器,搭建了测试平台,在军事和航空航天领域具有广泛的应用前景。

Ø  SiC薄膜封装技术:利用SiC薄膜的优异特性,研发了针对传统MEMS器件的薄膜封装和保护技术,将MEMS传感器的应用拓展到了高温腐蚀环境下,提高了适用范围。

Ø  SiC掩模光刻技术:利用SiC薄膜作为掩模光刻版上的掩模层,具有很好的耐腐蚀性和温度稳定性。

 

微能源技术

Ø  无线能量传播技术:采用射频无线传输(RF telemetry)的方式来解决植入式器件的能量和信号的传输与采集,研制适用于体内传输的MEMSQ电感及其射频传输网络,并实现可调RF电感、电容器件与器件的集成加工,得到了性能较好且适用范围大的集成芯片,已经进行了植入动物试验。

Ø  新型的能量采集器:采用新的三维微加工技术工艺,利用振动能量采集原理,研制适用于植入式的低频能量采集器,结合生物兼容封装技术,实现植入式传感器的自我供电。

Ø  新型太阳能电池技术:利用微纳复合结构能够提高表面吸收率和拓宽光谱的特点,研究能够在宽光谱下实现高光电转换效率的新型高性能太阳能电池。

 

联系方式:

电话:+86-10-62766570

电子邮件:hxzhang@pku.edu.cn 

个人主页:http://www.ime.pku.edu.cn/Alice

通讯地址:北京市海淀区城府路北京大学微电子研究院,邮编:100871

 

 

 

Haixia (Alice) Zhang, Professor

Ph.D (HUST1998)

Institute of Microelectronics, Peking University

Cheng Fu Road, Haidian District, Beijing, 100871

Tel: +86-10-6275-2536, Fax: +86-10-6275-1789

Email: hxzhang@pku.edu.cn 

Alice Wonderlab:  http://www.ime.pku.edu.cn/alice

[brief bio] Haixia(Alice) Zhang, Professor,Institute of Microelectronics, Peking Universituy.

I received my Ph.D. degree in Mechanical Engineering from the Huazhong University of Science and Technology.  After finishing my postdoctoral research at the Tsinghua University, Beijing, China, I joined the faculty of the Institute of Microelectronics in 2001.  From 2004 to 2006, I was a visiting professor at the University of California, Davis and the Case Western Reserve University.  Devoted to research in micro/nanotechnology, I have published over 90 papers in prominent journals and conferences and 6 books/book chapters. I also hold 14 patents on micro/nanotechnology. I serve as editor and reviewer for several leading international journals, including Micro Nano Letter, Journal of Micromechanics and Microengineering, Journal of Microelectromechanical systems, Sensors & Actuators, and Journal of Physics D: Applied Physics.  I have also served on the chair of IEEE NEMS Conference, the organizing chair of Transducers’11, involved in a number of international conferences as TPC members, including IEEE NEMS, ASME MNC, APCOT, etc.  As the founder of the International Contest of Applications in Network of things (iCAN), I organized this world-wide event since 2007. I was elected the director of Integrated Micro/Nano System Engineering Center in 2006, the deputy secretary-general of Chinese Society of Micro-Nano Technology in 2005, the Co-chair of Chinese International NEMS Network (CINN). I am a senior member of IEEE and serve as the chair of IEEE NTC Beijing Chapter. At 2006, I won National Invention Award of Science & Technology.

Professional Experience

2001-Present:  Peking UniversityInstitute of Microelectronics, Professor

Research Activity: M/NEMS Design, SiC MEMS, RF & Bio MEMS

Teaching Activity: MEMS Design technology and Devices, since 2004.

10/2005-6/2006: Case Western Reserve University, Dept. of Electrical and Computer EngineeringVisiting Associate Professor

Research Activity: RF MEMS in Bio Applications

10/2004-9/2005:  University ofCalifornia at Davis/Berkeley, Dept. of Electrical and Computer Enhineering, Visiting Scholar

Research Activity: RF MEMS devices

12/1998-10/2000: Tsinghua UniversityDEPTOF PRECISION INSTRUMENTS AND MECHANOLOGY

Postdoctoral Researcher

Research Activity: MEMS sensors and network.

Education

Huazhong University of Science and Technology, 1998

Ph.D. in Mechanical Engineering (School of Mechanical Science and Engineering)

Thesis: Design and Fabrication of Micro Amorphous Magnetic filed Sensor

Harbin EngineeringUniversity, 1995

M.S. in Automatic Control Engineering (Department of Automatic Control Technology)

Thesis: Research on 3D Accelerometers Initial Navigation System

Hefei University of Science and Technology, 1992

B.S. in Automatic Control Engineering (Department of Electronics and Computer Science)

Thesis: Database Application in HR System

Honors and Awards

l  National Invention Award of Science & Technology (Silicon-based MEMS Technologies and Applications),China, 2006

l  Teaching Award,PekingUniversity, 2007

l  Excellent Teacher Award,PekingUniversity, 2004

Research fields

MEMS Design and Fabrication Technology

Ø  Micro-Nano Integrated Fabrication Technology

Based on improved deep reactive ion etching (DRIE) process, micro/nano dual-scale hierarchical silicon structures with controllable sidewall profile is fabricated. And it is applied into several M/NEMS devices, such as super-hydrophobic structure and surface, and high-density controllable nanopillars for solar cell applications

Ø  DRIE modeling and simulation

 In 2004, Prof. Zhang’s group put forward the first DRIE model and its simulator DROPIE. It was commercialized by Intellisense company as RECIPE module in Intellisuite8.0 at 2005. Now RECIPE module can simulate 2D/3D DRIE process in micro and nano scale, and it has more than 50 customers from all over the world.

Ø  TSV modeling and simulation

Modeling of TSV (Through -Silicon-Via) is studied, include DRIE (deep reactive ion etching), PECVD (plasma-enhanced chemical vapor deposition) and Cu electroplating processes, its simulator named FASTSV is under developing.

SiC MEMS

Ø  PECVD SiC Fabrication Technology

Using PECVD process, SiC process with low-temperature, controllable stress and properties of SiC thin film was developed, which can be compatible with traditional MEMS/CMOS process. Due to the chemical stability of SiC, this process was extended to be a promising materials for dry and wet etching, enhanced MEMS process and its capabilities.

Ø  SiC MEMS Devices

Due to its excellent material properties, SiC MEMS devices are promising for harsh environment applications. Utilized bulk micromachining, PECVD SiC pressure sensors and Nano SiC resonator with high frequency and high Q factor were developed. The fabrication process is simple and under low temperature (<300), which make it could be integrated with CMOS process. It shows high qualities in high temperature, high pressure and erosion conditions.

Ø  SiC thin film packaging

PECVD SiC thin film can be used as anti-erosion protective layer for a traditional MEMS sensor. It keeps high sensitivity, temperature coefficient, chemical stability and long-term stability with controllable SiC coating layer. Therefore, PECVD SiC MEMS packaging technology, extend traditional MEMS devices applications in harsh environments.

Ø  SiC Stencil Lithography (Collaborated with EPFL)

Stencil lithography (SL) is a shadow mask based technique which allows parallel, resistless, micro- and nano-patterning of material through apertures in a membrane (stencil) onto a substrate. The SiC thin film can be used as high-quality mask layer, which demonstrated a better performance than the shadow mask made of SiN in terms of robustness to deformation and resistance to both dry and wet etching.

Micro Energy Technology

Ø  RF Telemetry Technology for implant system

Wireless power delivery to implantable biomedical devices by means of inductive coupling has been established. High Q new stack packaged 3D MEMS coils are utilized as the transmitter and receiver separately in improving the coupling efficiency. Based on bulk silicon micromachining and electroplating technology, the high Q RF inductors were integrated with Implant devices are fabricated on the single chip and under studying. The measuring frequency is from 10MHz to 200MHz. An attenuation function of the lateral, vertical and angular factors was fitted and verified by surgical implantation in animal.

Ø  Novel Micro Energy Harvesting System

Based on 3D micromachining technology, a novel micro energy harvesting system is developing; include bio-compatible packaging technology for implant applications.

Ø  Novel Solar Cell with Micro-Nano Dual Structure

Based on DRIE black silicon fabrication technology, a novel type of solar cell device with micro-nano dual structures is under developing, which has advantages, such as, Broadband, Anti-reflectance, Superhydrophobicity, and et al.